# MAPPADEMICS

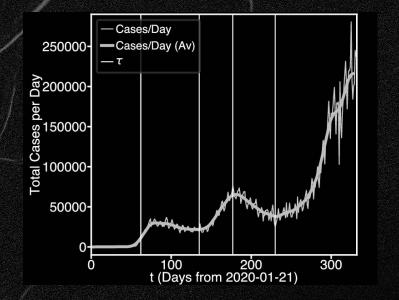
**EVELYN, JAMES, AMNI** 

To what extent are we able to use a computer model to determine an optimum response to epidemics?

# **Aims and Objectives**

## **Localisation**

Malaysian-specific statistics for added relevance and accuracy, promoting SDG 3 (Good Health and Wellbeing) within the country


#### **Real-World Applications**

Model can be used to track/model a variety of different diseases in different areas, improving SDG 3 all over the world

#### **Easily Accessible and Useful**

To show how epidemics come to be and to provide a visually engaging and easy-to-understand way and for people to understand how to stop them

## **Existing Models**



#### Limitations

X Lack of interactivity and visual elements

X Mathematically challenging to understand

Created with a more generalised perspective, as compared to a specialised "by country" perspective

https://www.google.com/url?sa=i&url=https%34%2F%2Fwww.nature.com%2Farticles%2Fs41598-022-07487-8&psig=AOvVaw3TyBfKlhqC\_n6iQAbiLesw&ust=1731076693123000&source=images&cd=vfe&opi=89978449&ved=0CBcQjhxqFwoTCKiPlKy5yokDFQAAAAAAAAAAABAE

## Inspirations

Simulating a Pandemic - <u>a video by</u> <u>3Blue1Brown</u>

An abandoned project based off a <u>YouTube tutorial</u>

The effects of the COVID-19 pandemic

The hope for improved healthcare for all

## **Improvements to our Model**

Our model is inspired by the simulation of disease spreading, except it is modified to a Malaysian specific context. We also include the use of masks and vaccines.





#### 

0

h.get\_infected(self.recover\_time)

#### def summarize(self):

time\_index = range(1,len(self.record)+1)
infected = [r[0] for r in self.record]
dead = [r[1] for r in self.record]

fig, ax = pyplot.subplots()
ax.plot(time\_index, infected, color = "red")
ax.set\_xlabel("Period")
ax.set\_ylabel("People currently infected", color = "red")

ax2 = ax.twinx()
ax2.plot(time\_index, newly\_dead, color = "black")
ax2.set\_ylabel("20 period moving average of fatalities", color = "black")
pyplot.show()

## How It Works: Our Code

- Uses grids to minimise processing
- Summarises the process to create a graph
- Can be run on any computer

## **Selection of Regions**

#### Kuala Lumpur

Population density: 8500 people per km<sup>2</sup>

https://jknselangor.moh.gov.my/hsis/images/covid19/Panc uan-Pesakit-Covid19-di-HSDG-BM/Kit Covid-19 EN.pdf

#### Kuching

Population density: 750 people per km<sup>2</sup>

#### Georgetown

Population density: 2600 people per km<sup>2</sup>

A wide range of data...

## **Diseases Selected**

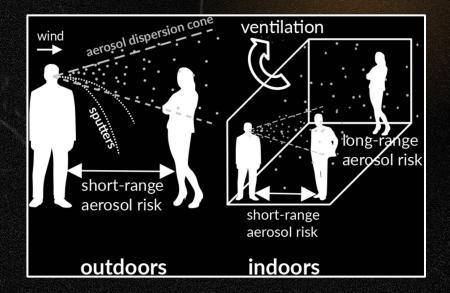
#### Influenza A

Tracking common epidemics

#### COVID-19

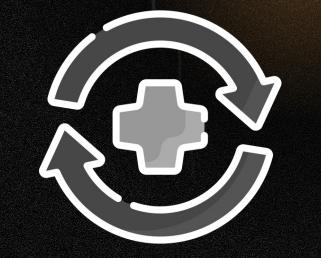
Tracking newly discovered diseases

#### Measles


A case study on the crucial role of vaccines

### Plague

Worst-case scenario (biosecurity!)


## Variable: Infection Distance

How far a disease can spread from the first infected person; can travel through air droplets from coughing and sneezing



## Variable: Recovery Time

Average length of time between a person getting infected and the body fighting off the disease



## Variable: Immunity Time

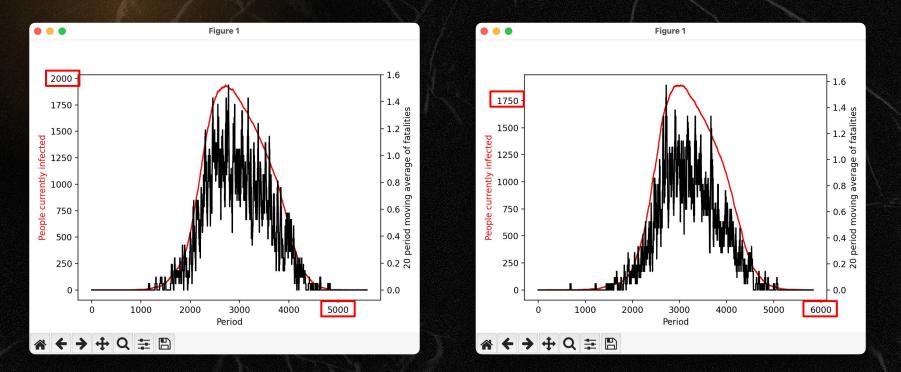
Average length of times antibodies specific to the disease remain in the body, preventing one from further illness

## Variable: Infection Probability

Likelihood of catching a disease when one is exposed to an infected person

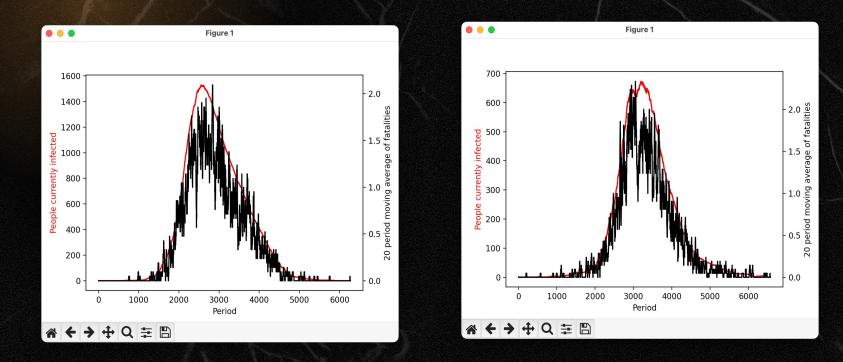


## Variable: Probability of Death


Probability for an infection to become fatal for the infected



## **Statistics**


| - en an                  | Influenza A                    | COVID-19                      | Pre-Vaccine<br>Measles   | Post-Vaccine<br>Measles  | Plague                    |
|--------------------------|--------------------------------|-------------------------------|--------------------------|--------------------------|---------------------------|
| Recovery<br>Time         | 10 days (1750<br>frames)       | 20 days (3500<br>frames)      | 20 days (3500<br>frames) | 12 days (2100<br>frames) | 20 days (3500<br>frames)  |
| Immune Time              | 18 months<br>(94500<br>frames) | 4 months<br>(21000<br>frames) | Lifelong                 | Lifelong                 | ~1 year (80000<br>frames) |
| Infection<br>Probability | 0.2                            | 0.2                           | 0.9                      | 0.7                      | 0.9                       |
| Death<br>Probability     | 0.0005                         | 0.001                         | 0.0025                   | 0.001                    | 0.0015                    |

https://www.webmd.com/cold-and-flu/flu-statistics https://www.webmd.com/covid/covid-recovery-overview https://www.who.int/news-room/fact-sheets/detail/measles https://my.clevelandclinic.org/health/diseases/4335-influenza-flu **Mask Feature** 



Flattening the curve works (with and without masks enabled)

Vaccinations



Flattening the curve works (pre-vaccine and post-vaccine)

#### **Limitations and Future Developments**



#### **Other Variables**

Increase in population, viral mutation, quarantine, vaccinations, and other government-related responses are not included in the model



#### Assumptions

Masks being enabled assumes that 100% of the population wears masks correctly



#### Proportionalities

City size, population density and R<sub>0</sub> values could all be made more realistic and mathematically accurate



#### **Community-Community Interaction**

City size, population density and R<sub>0</sub> values could all be made more realistic and mathematically accurate

# Thomas Mou

The Mappademics Team

## Contacts

Evelyn Teng: evelynteng.github.io linkedin/in/evelyn-teng

James Ng: linkedin.com/in/james-kbn

Amni Amin: linkedin.com/in/amni-amin